Update on CIELO Related Nuclear Data Measurements at the Gaerttner LINAC Center at RPI

Y. Danon

Gaerttner LINAC Center, Rensselaer Polytechnic Institute, Troy, NY 12180

2014 CSEWG/CIELO meeting, BNL, November 3-6, 2014

RPI Nuclear Data Group

RPI Faculty

Prof. Yaron Danon - LINAC Director

Prof. Li Liu

Prof. (Emeritus) Robert C. Block

BMPC/KAPL

Dr. Greg Leinweber

Dr. Devin Barry

Dr. Michael Rapp

Dr. Tim Donovan

Mr. Brian Epping

Dr. John Burke

Technical Staff

Peter Brand

Matt Gray

Martin Strock

Azeddine Kerdoun

Graduate Students

Ezekiel Blain

Dave Williams

Adam Daskalakis

Brian McDermott

Nicholas Thompson

Kemal Ramic

Carl Wendorff

Amanda Youmans

Undergraduate Students

Amanda Lewis

Hyung Jin Choun

The Nuclear Data Program at the Gaerttner LINAC Center

Driven by a 60 MeV pulsed electron LINAC ~10¹² n/s

Neutron transmission

Resonance region: 0.001 eV- 1000 keV,

High energy region: 0.4- 20 MeV

Neutron Capture

Resonance region: 0.01-1000 eV

New detector array at 45m: 1 keV ~ 500 keV

Neutron Scattering

High energy region: 0.4 MeV- 20 MeV

Prompt Fission neutron spectrum

Lead Slowing Down Spectrometer

- Fission cross section and fission fragment spectroscopy.
- (n,α) , (n,p) and (n,γ) cross sections on small (radioactive) samples.

Summary of Related Activity

- 235U fission and capture yield up to 3 keV.
 - Data was delivered to Leal (ORNL) for inclusion in the evaluation.
- ⁵⁶Fe high resolution transmission, 0.5-20 MeV
 - Data was delivered to Leal (ORNL) for inclusion in the evaluation.
- Neutron scattering 0.5-20 MeV
 - Data on ²³⁸U published.
 - Data on Fe finalized, publication in process.

- Prompt fission neutron measurements
 - Data on ²³⁸U in progress.

Neutron Scattering

- Provide accurate benchmark data for scattering cross sections and angular distributions in the energy range from 0.5 to 20 MeV
- Can be developed to provide differential elastic and inelastic scattering cross section measurements
- Design a flexible system: now also used for fission neutron spectra measurements

TOF Scattering Yield Measurement

- Measure the total TOF $t=t_1+t_2$
- For all scattering events $E_2 < E_1$
- In most cases the energy loss is small $E_1 \sim E_2$
- Since $t_1 >> t_2$ and $E_1 \sim E_2$ then for presentation the incident neutron energy E_1 is calculated using t and $L=L_1+L_2$

$$L_{1}, t_{1}, E_{1}$$

$$L_{2} \sim 0.5 \text{m} \qquad E(t) \approx m_{n} c^{2} \cdot \left[\frac{1}{\sqrt{1 - \left(\frac{L}{c \cdot t}\right)^{2}}} - 1 \right]$$

Scattering Detection System: Experimental Setup

Flux Shape Measurement

- Use a fission chamber with ~391 mg ²³⁵U in the sample position
- Use ENDF/B-VII.1 fission cross section for ²³⁵U
- Correct for transmission of all materials between the source and sample
- Compare to a similar measurement using EJ301 and SCINFUL calculated efficiency
- Combine the two data sets using fission for E< 1 MeV

Efficiency as a Function of Energy

Mechanical, Aerospace and Nuclear Engineering

Objective:

MCNP simulation of EJ301 response in the sample position must precisely agree with the measurement

Methodology:

- Use the measured flux as a source in MCNP simulation of the inbeam detector response
- In MCNP set the detector efficiency η =1 (tally only the neutron flux shape)
- Divide the measured response by the simulation results to get the efficiency $\eta(E)$ for each detector
- During the experiment periodic gain calibrations are done to minimize gain shift.

Data Reduction

- Sum all files and dead time correct.
- The experimental count rate corrected for background and false neutrons:

$$Rn_{i} = Rn_{i}^{s} - fn_{i}^{s} - \frac{M^{s}}{M^{o}} \cdot \left(Rn_{i}^{o} - fn_{i}^{o}\right)$$

 Rn_i^s , Rn_i^o - Sample and open neutron counts at TOF channel i

 fn_i^s , fn_i^s - Sample and open false neutron counts for TOF channel i

 M^{S} , M^{O} - Open and sample monitor counts for the run

The false neutron correction:

$$fn_i = \sum_{j=1}^{n_{\gamma}} f(A_j)$$
 ~2% effect for ²³⁸U

 n_{γ} - Number of gammas in TOF channel *i*

 $f(A_j)$ - False neutron correction factor for pulse area A_j

MCNP Simulation Geometry

- Use ASAP (As Simple As Possible) approach
- Use array of point detector tally F5 to model the EJ301 detector
 - Convolute the tally with the detector efficiency
- Include ¾" Depleted U filter in the simulation
- Include windows (Al)
- Include recent improvements of vacuum tube near the sample

Graphite Reference Results

- Differences between experimental data and MCNP calculations (ENDF/B-VII.1/JEFF-3.1) used to estimate systematic uncertainties
 - Systematic uncertainty ~ 2.6%

$$FOM_{i} = \frac{1}{n} \cdot \sum_{j=0.5MeV}^{n=20MeV} \frac{\left(C_{i,j} - MC_{i,j}\right)^{2}}{\varepsilon_{i,j}^{2}}$$

n – Total number of energy bins

C – Total neutron counts

MC - Normalized MCNP Results

i – Detector #

j – Energy bin

 ε – uncertainty including experimental and simulation

natFe Scattering - 61°

Reference	FOM
Graphite	1.20

Library	FOM
ENDF/B-VII.1	13.67
JEFF-3.1	13.45
JENDL-4.0	10.97

nat Fe Scattering - 153°

Reference	FOM
Graphite	1.94

20 10000 _T	0 10 5	Energy [MeV 2 1]	0.5	20 10) 5	Enei 2	gy [MeV 1]	- (
8000 - ω 6000 -	į	— мс	aphite Dat SNP Resu 53 deg	lts .	8000 -	— Nat Fe Dat — ENDF/B- — JENDL-4 — JEFF-3.1	VII.1 .0		東京	
\$ 6000 - 4000 -					4000 -	153 deg				
2000 -	1000	500 0000	0500	2000	2000 -	1000	4500	0000	0500	
50		500 2000 me of Flight [n:	2500 s1	3000	500	1000	1500 Time of	2000 Flight [ns	2500	300
	10000 2	1.5	J	Ene 1	ergy [MeV]		Time of	r ngin (in	0.5	5

Library	FOM
ENDF/B-VII.1	14.42
JEFF-3.1	20.31
JENDL-4.0	14.68

0.5

Observations for natFe

- The JENDL-4.0 evaluation had best overall agreement with experimental data from 0.5 to 20 MeV for all angles.
- Experimental data can be analyzed further to provide:
 - Inelastic to Elastic Scattering Ratios
 - Elastic (only) Scattering Contribution

Inelastic to Elastic scattering Ratio EJ-301 Response Functions

• Detector in-beam measurements were used to develop response functions for energies 0.4 < E(t) < 2.0 MeV

Inelastic to Elastic Ratio nat Fe

- Select an energy region (shown between the two black vertical)
- Fit in-beam response functions, $f_{el}(I)$ and $f_{inl}(I)$, to known levels

$$R(I) = A \cdot f_{el}(I) + (1 - A) \cdot f_{inl}(I)$$

Ratio =
$$\frac{(1-A)}{A}$$

Ratio = $\frac{(1-A)}{A}$ A – Fitted elastic fraction

Inelastic to Elastic Ratio

- Multiple scattering effects included in MCNP simulations
- Statistical and systematic uncertainties included in analysis

Elastic Scattering Contribution

- The response function fitted method does not easily extend to high energy resolution data and a new method was developed
- The goal is to isolate only the elastic scattering:
 - Cut pulses with integral less than the discrimination.
 - Correct for the elastic shape that was discriminated.
 - Method is insensitive to inelastic to elastic ratios.

Elastic Scattering vs MCNP simulation

- Elastic scattering can be measured from 0.5 to 2.0 MeV
- Only elastic scattering contribution measured and simulated
- Collaborating with ORNL to improve new ⁵⁶Fe evaluation

Prompt Fission Neutron Spectra

The Gamma Tagging Method

Use the double TOF method

Mechanical, Aerospace and Nuclear Engineering

- Use a gamma tag for fission (instead of traditional fission chamber)
- Use a combination of Liquid Scintillators and Li-Glass neutron detectors

Experimental Setup

- **Neutron Detectors**
 - EJ-204 Plastic Scintillator
 - 0.5" x 5"
 - 47 cm away from center of sample
 - 2 EJ-301 Liquid Scintillators
 - 3" x 5"
 - 50 cm away from center of sample

EJ-301 Detectors

Gamma

Detectors

Sample **Position**

EJ-204 Detector

- **Gamma Detectors**
 - 4 BaF₂ detectors on loan from ORNL
 - Hexagonal detectors 2" x 5"
 - 10 cm from center of sample
 - ¼" lead shield between detectors
 - Reducing scattering between detectors

$$ToF = \frac{kL_1}{\sqrt{E_1}} + \frac{kL_2}{\sqrt{E_2}}$$

$$k \approx 72.3 \, \frac{\mu s \, eV^{1/2}}{m}$$

 $L_{1,2}$ – flightpath distance

 E_1 – incident neutron energy

 E_2 – fission neutron energy

Gamma Tagging - EJ-204

 Gamma tagging method corrected for 30% detection efficiency compared to 83% detection efficiency with fission chamber

Neutron Distribution [Counts/MeV]

²⁵²Cf Prompt Fission NeutronSpectrum Low Energy

- Low energy data taken with 0.5" EJ-204 plastic scintillator
- RPI data show good agreement to Lajtai, Blinov data and ENDF evaluation
- Thin plastic detector allows for measurement down to 50 keV
- Gamma tagging method accurately reproduces PFNS for ²⁵²Cf

Energy [MeV]

E. Blain, A. Daskalakis, and Y. Danon, "Measurement of Fission Neutron Spectrum and Multiplicity using a Gamma Tag Double Time-of-Flight Setup", **invited talk**, International Conference on Nuclear Data for Science and Technology, New York, New York, March 4-8, 2013.

²³⁸U Prompt Fission Neutron Spectrum High Energy Preliminary Results

- Spectrum is normalized to ENDF/B-VII.1 at 1.2 MeV
- Spectrum is integrated over all incident time-offlights
- Preliminary data show good agreement with current evaluations
- Increase near 1 MeV agrees with new data by Sardet et. al. (as presented in the FIESTA 2014 fission workshop at LANL)

PFNS for two incident energy groups

- Data shown above and below the 2nd fission barrier
- Above the 2nd barrier some indication of increased yield below 1 MeV

Summary

- Neutron scattering in the energy range from 0.5-20 was measured for Fe and ²³⁸U at several scattering angles.
 - Data and MCNP simulation were used as benchmark for cross section and angular distribution evaluations.
 - Based on FOM the ²³⁸U and ^{nat}Fe data is in best agreement with the JENDL-4 evaluations.
 - Inelastic to elastic scattering ratio were obtained for the 1st excited state and compared with evaluations. All evaluations agree with experimental data within 1-2 times the experimental uncertainty.
- Prompt fission yields were measured using the gamma tag method
 - 252Cf measured fission neutron spectrum below 1 MeV is in good agreement with evaluations
 - Experimental results for ²³⁸U provide some information about the change in the PFNS as a function of energy.

Thank You

